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1. Memoir on the Theory of the Partitions of Numbers.—Part V. Partitions
in Two-dimensional Space.

By Major P. A, MacMamnon, R.A4., D.Sec., F.R.S.
Received December 31, 1910,— Read January 26, 1911.

Introduction.

IN previous papers® I have broached the question of the two-dimensional partitions
of numbers—or, say, the partitions in a plane-—without, however, having succeeded
in establishing certain conjectured formulas of enumeration. The parts of such
partitions are placed at the nodes of a complete, or of an incomplete, lattice in two
~dimensions, in such wise that descending order of magnitude is in evidence in each
horizontal row of nodes and in each vertical column. No decided advance was
made in regard to the complete lattice, and the question of the mcomplete lattice is
considered for the first time in the present paper.

I return to the subject because I am now able to throw a considerable amount
of fresh light upon the problem, and have succeeded in overcoming most of the
difficulties which surround it. In fact, T am now able to show how the generating
functions may be constructed in respect of any lattice, complete or incomplete, in
forms which are free from redundant terms. I have not succeeded, so far, in. giving
a general algebraic expression to the functions, but, in the case of the complete
lattice, I have shown that an assumption as to form, consistent with all results that
have been arrived at in particular cases, leads at once to the expression that has been
for so long the conjectured result. For the complete lattice of two rows, and for the
incomplete lattice of two rows, the results have been obtained without any assumption
in regard to form, and must be regarded as rigidly established.

Before proceeding to explain the new method of research which enables thls paper’
to make a notable advance, I must hasten to correct an error which I had not
detected at the time a former paper was written.

It will be remembered that partitions in a plane are such that there is a graphical

* «Memoir on the Theory of the Partitions of Numbers,” ¢ Phil. Trans. Roy. Soc.;’ A, 1896, vol. 187,
pp. 619-673; 1899, vol. 192, pp. 351-401; 1905, vol. 205, pp. 37-59.
VOL. COXL—A 473. L2 27401
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76 MAJOR P. A. MAcMAHON: MEMOIR ON THE

representation by nodes upon a three-dimensional lattice, just as for partitions on a
line there 1s a graphical representation by nodes upon a two-dimensional lattice. It
is convenient to replace these nodes by units, and to regard partitions on a line as
being in one-to-one correspondence with partitions in a plane when the part
magnitude of such is restricted to be not greater than unity ; thus, instead of saying
with FERRERS that

is a graphical representation of the line partition 321, I regard the plane partition

of units
111

11
1

as being in one-to-one correspondence with the line partition.
Just so the plane partition
331
22
1

is graphically represented by piles of nodes perpendicular to the plane of the

paper, say .
© ©
6 0

or we may replace the nodes by units, and say that it is in one-to-one correspondence
with a space partition, the part magnitude being restricted to unity. The plane
partition arises by projection of the space partition upon one of the co-ordinate
planes, just as the line partition arises by projection of the plane partition, with which
it is in correspondence, upon one of the co-ordinate axes.

Every two-dimensional graph of nodes may be interpreted either by rows or by
columns, and every plane partition of units may be projected in two ways. The
graphs in solido admit of one, two, three, or six readings.

" In previous papers I omitted to notice that a three-dimensional graph may admit
of two readings. The omission came to my notice when I was trying to verify that
the number of partitions of w tn plano the numbers of rows and columns, and also the
part magnitude, being unrestricted is given by the coeflicient of 2 in the ascending

expansion of the algebraic fraction
\ 1

(I—2) (1—2F (1 =@ (1—a ... ad inf.
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THEORY OF THE PARTITIONS OF NUMBERS. : 77

I counted, as far as weight 16, the numbers of the partitions by separately
counting those whose graphs possess one, three, and six readings. At weight 13 a
discrepancy appeared, because of that weight there are only two graphs which have
one reading, and, on the assumption that the remaining graphs could be read in either
three or six ways, it was clear that the number of the partitions must be = 2 mod 3 ;
but the coefficients of ' in the supposed generating function was found to be 2485,
which is =1 mod 3. It thus became clear either that the reasoning from the graphs
was wrong, or that the generating function was at fault. The discrepancy was
cleared up by the discovery that at weight 18 graphs with two readings present
themselves for the first time. The simplest of these is

331
211 of weight 13.
2

The property possessed by these partitions is that the successive rows are the
conjugates of the successive columns without being identical with them; that is to
say, that the successive rows are not to be self-conjugate partitions. Thus, 331,
211, 2 are conjugates of 322, 31, 11 respectively. The reading of the corresponding
hree-dimensional graph in the six modes gives either

331 . 322
211 or 31
2 11.

The separate enumeration of these forms is a matter for future enquiry.
~Art. 1. Turning now to the substance of this communication, I shall introduce a
new plan of procedure which is applicable when the places for the parts of the
partitions are given by the nodes of two-dimensional lattices, which may be complete
or incomplete. In every case I suppose the part magnitude to be not greater than /,
and when the lattice is complete, T suppose it to have m rows and 7 columns. The
generating function which gives by the coefficients of 2 the number of the partitions
of w of the nature considered will be denoted by GF (I, m, n).

In the excellent notation of Cavrey and SyLvmster I shall denote the algebraic
expression 1—a* by (s), employing Clarendon type for the letter s, and thus 1—z
by (1) and 1—a""* by ([+41), using always the Clarendon type in order to differentiate
such notation from that in which between the brackets the ordinary Roman type is
employed ; the latter will, in general, denote integers s, 1, [+1, as the case may be.
The notation is perfect for the purpose in hand, because it merely exhibits and
concentrates attention upon the exponent s, which is the essential part of the
expression, and the only part that in many cases it is necessary to handle
algebraically. Further, in several instances, identities involving such expressions in
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78 MAJOR P. A, MAcMAHON: MEMOIR ON THE

Clarendon type can be transformed into identities involving Roman type by simply
changing the type in the bracketed factors; this ensues because the fractions (s)=(t)
in Clarendon becomes equal to (s)=(¢) in Roman in the limit when 2 is equal
to unity. , .

Art. 2. The graphical representation by a three-dimensional lattice shows that the
generating function GF (/, m, n) is unaltered by any permutation of the letters /, m, n.
The subjoined notation is designed to show clearly the six alternative expressions of
the generating function, arising from this circumstance, which it is a principal object
of' this paper to establish.

Thus, write

b

[, = (s) (st 1).. (14 mts—1)
o (8) (s +1)...(m+s—1)

_(m+s) (m+s+1)...(m41+4s—1)
ML, = (s) (s41)...(I+s—1)

_ (m4s) (m4s+1)...(mFnts—1)
[ MNT, = (s) (s+1)...(n+s—1)

n+ +s4+1)...(n4+m-+4s—1
NM, = ks atet e tmde—l)

_ (n4s) (n+s+1)...(n+414s—1)
INL, = (s) (s+1)...(14+s—1) ’

 (Is) (Is+1)...(I4n4s—1)
LN, = (s) (s+1)...(n+s—1)

H

It is to be shown that

GF(,m,n) = |[LM|, |[LM|, ... |[LM |,
= |ML|, |ML|, ... ML/,
= |MN|, [MNJ, ... |[MN|,
= INM|, |[NM|, ... |NM],
= |NL|, |NL|, ... [NL [,
=|LN|, [IN |, ... |LN |,

Art. 8. Every known particular case agrees with these formule, but only two
general results have been established prior to this paper. One is the well-known
case of partitions on a line, viz. :—

_ (D) (42) .. (I4n) _ (a+1) (0+42) .. (n4])
GEC L) =" )... @) 1)@ .. 0

= |LN|, = |NL],
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THEORY OF THE PARTITIONS OF NUMBERS. 79
and the other is that given in Part II. of this Memoir, and also by Forsyrh,

1
1) {(2) (@) .. ()}* (n41)

This generating function may be regarded as enumerating partitions—

GF (o0, 2,n) = = |LN|, |LN|,, when [ = oo,

(1) At the nodes of a lattice of 2 rows and n columns (or of n rows and
2 columns)

the part magnitude being unrestricted ;
TOWS

(i1) At the nodes of a lattice which has the number of
columns

columns
Tows

unrestricted,

the number of
be > 2.
The found result shows that the number of partitions of w is equal to the number

equal to n and the part magnitude restricted to

of ways of composing w with )
one kind of unity,

two kinds of twos,

two kinds of threes,

two kinds of s,

one kind of n+1,

but all attempts to establish a one-to-one correspondence have failed. Had this
proved to have been feasible it might have been extended to prove the similar results
tor GF (o, m, n) wheve m > 2.

Art. 4. The linear Diophantine Analysis, which was applied to the same question
in an earlier part of this Memoir, having also failed to establish general results,
recourse has been had to a plan suggested by Part IV. of the Memoir,* and a
considerable advance has been made. In that paper I cousidered the number of
different ways in which £ defferent numbers can be placed at the nodes of a lattice,
complete or incomplete, the number of nodes being £, and the numbers being placed
in such wise that descending order of magnitude is in evidence in each row from West
to East and in each column from North to South. ,

In the paper quoted I showed that if the rows involve a, @, ..., «, nodes
respectively, where, of course, ¢, = a, = ... = a,,, the number of ways of arranging the
Sq different numbers at the nodes is

(2a) ! \ ‘
I (as—ay—s
(a+m—1)1 (ag+m—2)! ... (dpr+ 1)1 @l (= cti—s+1)

* «Memoir on the Theory of the Partitions of Numbers,” ¢ Phil. Trans.,” A, 1908, vol. 209, pp. 153-175.
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80 MAJOR P. A. MacMAHON: MEMOIR ON THE

where s < ¢ and the product II has reference to every pair of numbers a,, t, drawn
from the succession a,, &y, ..., . '

This result will be found to furnish an important key to the solution of the
problems before us.

It is possible, by the method employed, to consider the generating functions for
partitions at the nodes of an incomplete lattice, and I shall use GF (1; a, b, ¢, ...) to
denote that which has reference to a lattice whose successive rows involve «, b, ¢, ...
nodes, respectively, the part magnitude being restricted by the number L. In this
notation GF (I, m, n) may alternately be written G (I; n™) or GF (7; m”), wherein n™
will denote m rows each of n nodes.

I derive from every lattice, complete or incomplete, a lattice-function of a, and this
function depends, like the generating function, not only upon the specification of the
lattice, but also upon the number ! which limits the part magnitude. I denote this
function by L (], m, n) or by L(l; a,b, ¢, ..), according as the lattice is complete or
incomplete. In cases where no confusion can arise, I simply write L for brevity.

Art. 5. T will now explain the formation of the functions

L(w,mn) and L(w;ab e ..);
and then establish the fundamental propositions

v Li(o,m,n)
GF (1) = (355 "y

L(w;a,b,e...)

tF (0w, b e, ...)= .
Gl be ) =2y (3a)

In the next place T will explain the formation of the functions
. L(l,m,n) and L(l;a, b, ¢, ..),

and establish the fundamental propositions
| : L4, 0, n)
GF (I, m, n) =, \20 2
G ) = (1) 2y . )
_ Ll a b )
(1) (2) ... (Ja)

GE (05 a,b,¢,...)

.

Avt. 6. Consider an incomplete lattice having 3, 2, 1 nodes in the rows respectively,
and let any six different integers (say the first six) be placed in any manner at the
nodes in such wise that descending order of magnitude is in evidence in each row and
in each column ; such an arrangement may be

631
52
4
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THEORY OF THE PARTITIONS OF NUMBERS. 81

Let the Greek letters o, B, y be associated with the first, second, and third rows,
respectively, and consider each number in the lattice in succession in descending order
of magnitude. Thus, beginning with 6: since it is in the first row I commence a
succession of Greek letters with o ; passing to 5, since it is in the second row, I follow
with B8; then 4 gives y, since it is in the third row; then 3 gives «; 2, 8; and finally

1 gives a.
afByoBu.

In this way I obtain a permutation of the letters in &*8%, where the exponents
3, 2, 1 enumerate the nodes in the successive rows of the lattice. This permutation
possesses the property :—

“If a dividing line be made between any two adjacent letters of the permutation,
the succession of letters to the left of the dividing line is like the whole
permutation, such that « occurs at least as often as B8, B8 at least as often
as v ; in other words, the numbers which specify the occurrences of «, B, y,
are in descending order of magnitude.”

In fact, if the process of forming the Greek letter succession (or permutation) be
arrested at any point, the lattice numbers that have been dealt with occupy a set of
nodes which also constitute a lattice, complete or incomplete.

It follows, of course, that the first letter of the permutation must be a. The lattice
arrangement of numbers is recoverable from the permutation, for it is merely
necessary to write the numbers in descending order underneath the letters when we
see that the successive lattice rows are indicated by the letters «, 8, v, respectively,

aByaBo
654321

The process is thus unique, and there will be as many different Greek letter
permutations having the properties above specified as of arrangements of unequal
numbers at the nodes of the lattice having the specified descending orders.

Every Greek letter permutation can be separated into groups, each of which contains
letters in alphabetical order; in the case before us this is accomplished by two
dividing lines

afy|ef]e,

each of which separates a letter from one which follows it, but is prior to it in
alphabetical order.

I associate a power of x with each permutation by taking for the exponent a sum
of numbers p;+p;+p; +..., where p, denotes that the s dividing line has p, letters
to the left of it. Thus in the above instance p, = 3, P» = 5, and the associated power
of x 1s &*** = a8, '

YOL. CCXL.—A. M
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82 MAJOR P. A. MAcMAHON: MEMOIR ON THE

Every one of the

(Sar)!

I (as—a,—s+1
(+m—1)! (ag+m—2)! ... (€ +1)! amls,t(ws w8 +)
arrangements of the different integers at the nodes of the lattice will thus have a

power of x associated with it, and taking the sum of them all T obtain the lattice

function
L(o;a,a, a,...) = Sapterest

Art. 7. T will set out at length the formation of L (¢ ; 8,2, 1). »

654 654 653 653 652 652 651 651
32 31 42 41 43 41 43 42
1 2 1 2 1 3 2 3

aaaBy, aoafy|B, aaﬁla[)’y, aaﬁ[ay],@, aaf3B| oy, aaﬁ'yla,@, aaﬁﬁ'yia, aaﬁ'ylﬁla

0 3 4 5

x o x x T x P x
631 632 641 642 641 643 642 643
52 51 52 51 . 53 51 53 52
4 4 3 3 2 2 1 1

uBy| #B|a,aBy| anf,af|ay| Bz, aB|ay | uB, aB| aBy| v, aB| wry| B, 28] 4B | oy, uB| By

8 3 11 6

x x T x a a ol a?

so that
L(w;38,2,1) = 1+a+ 22+ 22* + 20° + 20° + 20" + 200° + o* + ™,

It is obvious that this process can be carried out in respect of any lattice, complete
~ or incomplete, and that the number of different Greek letters involved will be equal
to the number of rows.
Art. 8. To show the connexion between such a lattice function and the corre-
sponding generating of partitions at the nodes of the lattice I proceed as follows :—
We have to establish the relation

Lo ; ay, a, a,, )

1) (2) . (3)

As the simplest possible case (with a trivial exception) consider the complete lattice
of 2 rows and 2 columns

GF( oo ] OLl, 662, 003, ...) =

and any numbers, equal or unequal, to be placed at the four nodes in such wise that
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THEORY OF THE PARTITIONS OF NUMBERS. 83

there is descending order of magnitude in both rows and in both columns; say that
the numbers are

p 9
r oS

subject to the conditions p=g¢g=s, p=r=s.
It is clear that we must either have

(i) p=qg=r=s or (ii)p2¢">gzs;

and that these two systems do not overlap.
If (i) obtains we may perform the summation Zx?*?*"** by writing » = s+A,
¢g=s+A+B, p=s+A+B+C, where A, B, C are arbitrary positive integers, zero

included ; the sum is thus

2w0+-2B+3A+43 ;

and since C, B, A, s may each of them assume all values ranging from zero to infinity,
the sum is clearly

| ,
1)(2)(3)(4)°

if, on the other hand, the parts of the partition have such values that (ii) obtains, we

may write
qg=s+A, r=s+A+B+1, p=s+A+B+C+1,

and we have the sum
2w0+2B+3A+4s+2
2

which is equal to
2

(1)(2)(3) (4)°

By addition we have

GF (w; 2,2) L+a”

o, —_— 1 .
S ME@E)®  1)@EPE)

and it will be noted that 1+a® = L (o ;2,2), derived, as above, from the lattice
arrangements

43 42
21 31

aa 3B af|ap
x’ a?

The fact is that the alternatives (i) and (ii) exist becawuse there are two lattice
arrangements of unequal numbers, and the signs of equality and inequality are
arranged in (i) and (ii) so that the required sum may be separated into two non-
'overlapping systems in correspondence with the lattice arrangements. The fact that

M 2
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r>q In (ii), ¢ being a letter prior to + in alphabetical order, is in direct corre-
spondence with the Greek letter permutation o8|, in which a B precedes an o
which is prior to it in alphabetical order. Moreover, » occurring in the second place
in the condition (ii), p = r > ¢ = s clearly contributes the integer 2 to the exponent
C+2B+3A+4s5+2. Thus the numerator finally determined is necessarily the lattice
function L (o ; 2, 2) found by the specified rules.

Art. 9. Next take a case which is not quite so simple

p q

s t wu,

where p=g=r,s=t=u, p=s, ¢=t, r=u; the associated lattice arrangements
and the Greek letter permutations are '

654 643 653 652 642

321 521 421 431 531
aaaBR afB|aaBB aofB| BB aafB I of3 aB|afB|aB

a® a? a? xt at

yielding

S~

5) (6)
L(w;38,3)= 1+w2+x3+w4+x“=(———.
(=:3.8) @6

-

We have five non-overlapping systems

() p=g=r=s=t=u, acafBB,
(ii).p?_s>q_>_7ﬁ_>_t_>_u, af3 | aaBB,
(i) pz=g=s>r=t=u, aaf3|afBB,
(iv) pz=q=s=t > r=u, aaBB|apB,
V) p=s>q=t>r=u, afB|aB|ap,

wherein the positions occupied by the symbol > are to be compared with the
positions of the dividing lines in the corresponding Greek letter permutations. It ig
clear that the summations derived from the systems (i), (it), (iit), (iv), (v) give powers
of  in the numerator of the generating function exactly corresponding to those
which enter into the lattice function by the rules given. Hence

_ L(=;3,3) _(5)(6) 1

G (=389 =me) .0~ @0 0@ 6

_ 1
CMEIEr®
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THEORY OF THE PARTITIONS OF NUMBERS. 85
This short demonstration suffices to establish the general relations

L(co; Ay, Oy, O, )
1)@ ...
_ L(o;m,n)

“(1)(®)... (mn)

Art. 10. Remarkable properties of the lattice functions will present themselves as
the investigation proceeds. A few observations may be usefully made at this point.
In every case the zero power of x presents itself in correspondence with that
permutation of the Greek letters which is in alphabetical order.

In the case of partitions on a line the lattice is a single row of nodes; the Greek
letter succession is composed entirely of the letter « and the lattice function is unity.

A most useful property arises simply from the definition of the function, viz.,
putting a equal to unity we find that the sum of the coefficient is

GF (oo ; ay, ag, a5, ...) =

GF (o ; m, n)

A A

SOCIETY

(Ea)! —,—§ 41
(e +m—1)! (ay+m—2)! ... (am_1+1)!amlg(% =5 +1)

OF

a verification of constant service.
I seek a representation of the lattice function that shall be a constant reminder of
this enumerating function, and with this object in view I write the latter in the form

(1.2....5q) (o~ +t=s)

(m.m+1....a+m—1)(m—1.m....a,+m—2)... oI (t-s)
{28 (@t D) (L. 2. . @) 5t

and I then write
L( 00 5 Oy, Qgy A, ..y am)

_ (1) (2)... (3) S
= (m) (m+1) ... (a,+m—1). (m—1) (m) ... (a,+m—2) ... (ot thy, ..., )
o (2) (3) ... (agy+1) . (1) (2) ... (am)

where the algebraic fraction on the dexter, which I term the outer lattice function, is
of fixed form, and the remaining algebraic factor IL( o ; ay, as, ..., a,), which I term
the inner lattice function, has to be determined.

The outer function reduces to the corresponding part of the arithmetical function
when  is put equal to unity; under the same circumstances the inner function
reduces to the sum of its own coefficients, viz., to

)

y
S

SOCIETY

I (a—ay+t—s) + I (t—s).
st 8, t

OF

There is a convenience in thus postulating the expression of an outer lattice
function, because in every known result in regard to complete lattices the inner
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function turns out to be simply unity; a principal object of this investigation is to
establish that for the complete lattice the inner function is invariably unity. This is
consistent with the result conjectured in Art. 2.

In regard to incomplete lattices the inner function is unity in special cases. The
determination of its form for the general incomplete lattice is apparently a very
difficult matter, which is reserved for future consideration. Its actual form for the
lattice of two unequal rows will be determined presently.

Art. 11. There is also a vitally essential representation of the lattice functlon
as a sum of sub-lattice functions, which forms a natural bridge from the function
GF (o ; ay, @, g, ...) to the general function GF (I; ay, as, @3, ...). When the lattice
function was formed from the permutations of the Greek letters, every permutation
had s dividing lines where s ranged from zero up to a maximum value w, which has
not yet been determined. That portion of the lattice function which is derived from
those permutations which involve precisely s dividing lines I name the sub-lattice
function of order s and write it : '

L, (o0 ; ayttats ...), or L (o0 ; m, n), or simply L,
if no confusion arises from the abbreviation.

Thus L= gLs.
0

In the elementary examples already dealt with
L(,2,2)=L(%;22)+L(x;2,2),

= 1 + x? s

L(,23) =L (co;23)+L(»;2,8)+Ls(x;23)

= 1 + aPaetrat + a® ,

L, +1, +L, + L,
=1 +224+223+ 224+ 22" + 2254+ 2"+ 20+ + ™

L(w;38,21)

It will be observed that L, is invariably unity.
Art. 12. In terms of these sub-lattice functions I now define the new and more

general lattice function L (I; o, @y, a3, ...), in which [ replaces . I write
L(; oy, ag a3, ...) = (141) (142) ... (14-32) Ly (0 5 @y, @, s, .00)
+ (1) (141) ... ((+a—1) Ly (o0 ; oy, @, g, -..)
+ ...
+ (l—p41) (—p+2) ... (1+Za—pu) L, (5 o, @z, a5, ...) 5
and also a general sub-lattice function

L, (I ay, @, g, ...) = ((—s4+1) (—s+2) ... (I4+Ja—s) L, (o0 ; au, a, a5, ...).
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Art. 18. The next step is to establish the fundamental relations

GF (15 a, iy 1y, ..) = 2L T O O )
1) (). (32)
L (1, m, n)
GF({,mn) = Z2— ",
( ) (1) (2) ... (mn)

We have to take account of the circumstance that the part magnitude is now
restricted not to exceed L. Take again the case, previously considered, of two rows and
three columns. I recall the five distinct parts of the summation

(1) P = q =pr>=s=t=u giving EmE+2D+30+4B+5A+6u

( (11) P =s5> QZ r=t=u . EwE+2D+3C+4B+5A+6u+2 ,
(iii) 2:) 2 q 2 s > 7/. 2 tz u s sz+2D+3C+4B+5A+6u+3 ,
(iv) }) Z q 2 s ?_ t > 7.2 u . Ea}E+2D+30+4B+5A+6u+4 ,
(V) p =g > Q = ¢ > r=u , EwE+2D+30+4B+5A+6u+6

= = U freenst 5 .

For the condition (i) we put

t=u+A, r=u+A+B, qg=u+A+B+C, s=u+A+B+C+D,

p=ut+tA+B+C+D+E,
from which it is clear that
‘ u+A+B+C+D+E

cannot exceed / in magnitude ; hence the sum

¢%IE+2D+30+4B+5A+GM
Py

is the generating function of partitions on a line into ! parts not exceeding 6 in
magnitude, and is therefore

(I+1) ((+2) ... (1+86)
1)(@)...(6)

Similarly in each of the cases (ii), (iii), (iv), belonging to L, (o, 3,2), we put
p=u+A+B+C+D+E+1, and it is clear that u+A+B+C+D+E cannot exceed
[—1 in magnitude ; the corresponding portion of the generating function is therefore

OO+ . (4+5) 7
(1)(2) .. (6) L, (=, 3, 2).

Finally, since in (v) we put

p=u+A+B+C+D+E+2,
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we obtain a part of the generating function

A=) 1) ... ()1 o 5
D@ (=32

Thence
(D) 48 Lol 8 )+ (1) o (A9 T [ B 2) (o3 )
) v + (| — 2\ %, ’2
GF (1, 3,2) = (1)(2) ... (6) -

_ L( 3, 2)
(1)(2)...(6)
In general, when the lattice has Sa nodes, we have a set of inequalities belonging
to L, (o ; @y, @y, s, ...) which give rise to the generating function

(I—s+1) (I—s+2) ... (I+Ja—s)
(1)(2) ... (Ja)

Ls( o 5 Oy, Ugy Ug, "');

and thus the above-given fundamental relations are established.
Art. 14. The generating functions for two-dimensional partitions GF (/, m, n) has
been found in terms of lattice functions in the form

(I41) ... ((+mn) Lo+ (1) ... (4+mn—1) L; +...... + ((=p+1) ... (—p+mn) L,
(1) ... (mn)

If we subtract these partitions from those enumerated by GF ( oo, m, n), we are left
with those partitions which contain one part at least equal to or greater than [41.
I shall show how to determine directly the generating function for these in terms of
lattice functions. To lead up to the proof, I will give an inductive proof of the
theorem—

GF(, 1,n) = (‘Jr(?) > gl‘)'"n) .

Taking the parts at # nodes in one row

the partitions which have a highest part equal to /+1 will be obtained by placing the
part {41 to the left of each of the partitions enumerated by GF (I+1, 1, n~1),

Hence the whole of the partitions which have one part at least equal or greater
than {+1 are enumerated by

Sa* GF (141, 1, n—1)
l
and

@

GF (I, 1,7) = GF (w, 1, n)—32'" GF (l+ 1,1,n—1)

’
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Assume the truth of the theorem in the case of

GF(l+1,1,n-1)
for all values of [; then

(1. m -%~_L~_mwl+1 14-2 oo (I4n)
GreL=mom T ((1).)..(11(_1))

Putting ! = 0,

2t (1+2) ... (I+n)

M..a-1) |
“and, therefore,
2,0 (1F2) . (I44m) _ O b’ (‘IL(E)I—)

S () (a=1)  @AF®) ... (a=1) @1)(2)(3)...(m—1)

63k (_n:(-%%):@ S
tO®er@..a-n Ty Ty

and thence

L g (42) . (I4n)
a)...(m) a)...@—1)

OIS TR v

= L {
(1) ... (n) (1) (1) (2)

_ (1) ... (I4n)
@)@

Hence
GF (I, 1,n) = (H'(ig él;-n)
v (n
by induction.
To generalize this method, I take a lattice which is complete but for the node at
the left-hand top corner

.

and first determine the generating function for partitions such that the descending

order of part magnitude is in evidence in each row and in each column. I take the

number of rows to be m, and the number of columns n. A slight consideration shows

that if L, be the sub-lattice function of order s for the complete lattice, that of the
VOL. CCXIL.—A. N
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deficient lattice now under consideration is &L, ; hence, if the part magnitude be
unrestricted, the generating function is

1+ L+ 2Ly +...+27*L, |
(1)... (mn—1) ’

and if the part magnitude be restricted not to exceed /,

(14+1)...(4+mn—1) + 2 (1)...((4+mn—2) Ly+... +&™ (I—pu+1)... (—pu4+mn—1) L,
(1) ... (mn—1) )

A simple example, that may be at once verified, is found by taking m =n =2 and
the defective lattice

Here L, = I, = 2" and the generating functions are

142 1

1 @)@ arE)’

(141) (14+2) 1+3)+= (1) (1+1) (142) .
1) (2 (3) ’

putting ! = 1 we obtain 1+ 2x+x°+a? verified by

1 . 1
1. 1 . 11

1 x € x

Now consider the partitions at the nodes of the complete lattice such that one part
at least is equal to 7+ 1 and no part exceeds I+1. We obtain all such by placing the
part I+1 at the node situated at the left-hand top corner and connecting with it all
of the partitions at the nodes of the incomplete lattice, which are such that the part
magnitude is restricted not to exceed [+ 1 in magnitude.

We thus derive a generating function

L (142).. (I4-mn)+2 (141)... (I+mn—1) Ti+...... +a *(l—p+2) ... (l—p-+mn)
1) ... (mn—1) , ’

and thence the generating function, which enumerates all partitions at the nodes of
the complete lattice, which are such that each has one or more parts at least as great
as [+1, 18

st 142) coo (I4rmn) +27 (04 1) ... (I4mn—1) Ly+..... 427 ({—p+2)... (I—p-+mn) ,
@)...(mn—1)
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and it is easy to verify that this expression added to the expression already found for
GF (I, m, n) is, in fact, equal to
’ Lo+ Li+...+L,

(1) ... (mn)
that is, to GF (0, m, n).

Art. 15. This main proposition involves the whole theory of the partltlons at the
nodes of an incomplete lattice; it gives the true generating function without
redundant terms, and this only needs examination and, where possible, simplification.
Such simplification is apparently always possible when the lattice is complete.
Moreover, there is the task of exhibiting L ( o ; oy, o, g, ...) as a product of outer and
inner lattice functions and of finding the algebraic expression of Ly ( o ; oy, s, as, ...).

There is an important and quite general property of the lattice function which must
now be explained. If a lattice be read by columns instead of by rows its specification
changes from a partition to the conjugate partition, and it is a trivial remark that the
generating function of partitions at the nodes is not altered. In fact, if the rows
possess a,, d,, ..., &, nodes and the columns b,, b,, ..., b, nodes

GE(l; ay, ag, ooy ) = GE (15 by by, ..., B,).

Moreover, since the generating function is the quotient of the lattice function by

an algebraic function which depends merely upon the number of nodes, it is clear
that
L( SO al) Agy +vvy am) = L(OO 5 bl} bz, veey bn)’

L a0 ...,0,) =L(; by, by, ..., b,),

(ay, Ay, ..., ) and (by, Dy, ..., b,) being conjugate partitions.
From the last written relation we find

(41) ... (HZ8)+(1) ... (+3a—1)L; (o ; oy, as, ..., )
‘ +(1=1) ... ((+3a—2) Ly (005 ay, oy, ..., 6)+ ..

= (I41) ... (4+Za)+(1) ... (+3a—1) L, (o0 ; by, by, ..., by)
+(1=1) ... (+32—2) Ly (05 by, by, ...y b)) + ..

Putting herein I = 1, 2, ... in succession, we establish that

Ls( o ; Uy, Agy ooey am) = Ls( 3 bla Z)25 ey bn))
and thence
Ls (l’ Oy, Ay ooy a’m) = Ls (l: bl: bz; ceey bn)9

proving that the sub-lattice functions also do not change in passing from a lattice to
the conjugate lattice.
N2
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As a rule, with some exceptions, the inner lattice function changes in passing from
a lattice to its conjugate.
Thus 1t will be found that

IL (o ; 22221) = Ezi IL (o ; 54),
(22221) and (54) being conjugate parmtlons
Exceptionally, if it be proved that the inner lattice function of a complete lattice
is unity, the function obviously does not change on passing to the conjugate lattice.
Another exception appears to be

IL(OO ; m1") — IL( o ; n+1. 17&—1>,

m1™ and n+1. 1" being conjugate partitions and there may be others.

Art. 16. My next object is to obtain the lattice function for [ = oo which
appertains to a lattice of two unequal rows and to find the form of the inner lattice
function. -

The first step is to establish the relation

L(w;ab)=L(w;a b-1)+a""""'L(o;a-1,0-1)
+a" L (0 ; a—2, b—=1)+...+a”L (o ; b, b—1),

Consider the Greek letter succession «’8’, where a = 0.
The whole of the permutations derived from the lattice terminate in one of the
following ways

B; Ble; Ble®; ... Bla"",

since @ cannot occur more than a—b times at the end of the permutation by reason of
the fundamental property of a permutation. Permutations which terminate in the
manner B|a’ where s> 0 clearly give rise to a factor ***™* in the associated powers
of x; the other factor will be due to all of the permutations of the succession a3’
which terminate with B that is to say, the other factor will be

L(o;a—s,b—1).
Hence

a—b

L(w;ab)=L(w;a b- 1)+2x““’ *L(ow;a—s, b—1),

as was to be shown.
Now assume the truth of the relation

L(oo;as)= (1) (2) ... (a+ts) @™t (a—s)+(1)
B® et M@ -0 O
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when s = b—1, for all values of «. Then

L (o ab) = (1) (?) ... (a4+b—1) 2 (a—b+4+1)+(1)
’ ) (8)...{(a+1).(1) () ... (b—1)" (1)
(1) (@) ... (a+b—2) ~a(a—b)+(1)
(2)(3)...(a). (1)(2) ... (b—1) (1)

+xa+b—1

+ ...
(1) 2) ... (2b—1) 2 (1) +(1)
@G . 0+). @ .. o= (1)

The right-hand side has «—0+1 terms; assume that the sum of the last » terms
may be written

+a?

22 (1) (2) (2b-|—p—-1) . (P)
1)) - (b +p). (1) @) .. ) P

an assumption which is obviously justified when p = 1; then the sum of the last
p+1 terms (p > a—0b) is

o (V@) @4p=1)(B) iy (1)(2) ... (2bhp—1) {& (p+ 1) +(1)}
1) @) ... b+p). (1) (2) ... (0) 1) @) ... (b+p—1). (1) (2) .. (b—1)°

and this on simplification proves to be

a (1) (2)...(sb+p)
(1) () ... (b+p+1). (1) (2) ... (b) (p-+1),

which is a justification of the assumption. Hence the right-hand side of the expression
of L (= ; ab) is, leaving out the first term,

2 (1) (2) ... (a+b—1) Y
(1)(2)--.(a).(1)(2),,,(10)(3' b);

leading to

L(o; ab) = (1) (2) ... (a+b—1) @ (a=Db41)+(1)
D= D@ @t ). () @) 5=1) @
22 (1) (2) (a'+b""1) —_
) @) @) Y
(1) (2) ... (a+b) @ (a=h)+(1)
(2)(8) ... (a+1). (1) (2) ... (b) (1)

This result, being true when b =0, i1s thus esfabl_ished universally. The outer
function is of the required form, and the inner function is

1L ( o ; OLZ)) — abtt (aa;’)’*‘(l) = 1+t (aw(T)b) .
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This leads to the new result

o ab) = "t (a— b)+(1)
GF (oo; ab) (1)(2) ... (a+1). (1) (2) ... (b)

and as a particular case,

. = o'} n) = ! ’
GF (o0; nn) = GF (0, 2, ) (1) {(2)(3) ... (n)}% (n+1)

a result already known.

Art. 17. The determination of L (oo; abe) presents great difficulties, so that the
investigation proceeds in the path of least resistance. When the lattice is complete,
the Greek letter succession is conveniently taken to be

n n n
O 0y o.. Oy,

Tt is clear that each permutation, that arises from the lattice, must terminate with
a, ; hence this latter may be always deleted, and we find

L(oo; ™", n—1) = L (o; n™)

and the sub-lattice functions are also equal, but the inner lattice functions differ;
thus it will be found that

IL (005 nn) = 1 but IL (05 0, n—1) = 14a"

The Sub-lattice Functions.

Art. 18. It is necessary to inquire as to the highest order of sub-lattice function

that presents itself. For a lattice of m rows and n columns I form the rectangular
scheme

o oy oy ...
Oy Oy Oy ... Oy

/ 0(-3 a3 0(3 e a3

/ Oy Oy Oy ees %oy

where there are n columns.
Reading this parallel to the arrow (1nchned at 45 degrees), commencing with the
left-hand top corner, I obtain the permutation

o, 0‘2[“1: “3]0‘2]0‘1; “4]0‘3}0‘21 Oy ooo Oy, ] Q-1 I ) aml“m—l) Oy

This is the permutation which involves the maximum number of dividing lines and
corresponds to the sub-lattice function of highest order; the permutation is unique,
yielding a single power of x, which is the sub-lattice functlon in question. The
dividing lines may be counted,
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Since n” and m" are conjugate partitions, we may take n=m without loss of
generality. The number of dividing lines is

1+248+...+m—2+(n—m+1) (m—1)+(m=2)+...+3+2+1,
= (n—1) (m—1).

Hence we have sub-lattice functions of all orders from zero to (n—1) (m—1). Tt
will be observed that the permutation, above written, possesses symmetry in that it
is unchanged by writing e, for a, and inverting the order.

The same method is applicable to the determination of the maximum number of
dividing lines appertaining to permutations derived from an incomplete lattice. Thus,

if the letters be a*a’a,,
o oy 0y

Oy Oy
/
the reading parallel to the arrow gives
oy, 0| o, 0] oy | oty

The highest order of sub-lattice functions when the letters are

aln‘ a2712 e amn

will be found to have higher and lower limits n—n, and Sn—n,—m+ 1 respectively,
the actual value depending upon the magnitudes of n,, n, ..., n,. The lower limit is
the actual value when the lattice is complete.
Art. 19. The next point is the determination of the expression of L)1) ( 0; 1™),
or of Li,—1ym—1) ( 0, m, n) as it may be also written.
The dividing lines occur in groups—
(i) In m—2 groups, containing 1, 2, ..., m—2 lines respectively ;
(ii) In n—m+1 groups, each containing m—1 lines;
(iii) In m—2 groups, containing m—2, m—1, ..., 2, 1 lines respectively.
Let the exponent of & sought be m+mwy+my; my, 7, s, corresponding to (i), (ii), and
(iii), respectively.
m=24(445)+(7T+8+9)+...+ {3 (M —3m+4)+... + 1 (m*~m—2)},
=4(1.2°42.3°+3. £+... to m—2 terms),
= § (m=2)(m=1)°+§ (m—2) (m—1) (2m—38)+% (m—2) (m—1),
= g (m) (m—1) (m—2) (8m—1).

Ty = %—(m—l)m2+%(m—1) m(m+2)+4 (m—1)m (m+4)+... to n—m+1 terms,
= £ (m—1)mn (n—m+1).

w3 = (mn—2)+(mn—4+mn—>5)+(mn—7+mn—8+mn—9)+... to m—2 terms,
= gmn (m—1)(m—2)—g5m(m—1)(m—2)(3m—1).
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‘Whence

m+mtm = 4n(n—1)m(m—1);

and

L(n—l)(m—l)( ®, M, 7’&) = w‘/27l(n~1>7)l(7n—1)'

If, in the succession
0y, Oy I Oy, %3 I Oy l Kpy eaey Oy ] %ip—15 Oy

we fix upon any dividing line and arrange the letters to the right of it in alphabetical
order, thus obliterating the lines to the right of the one fixed upon, we obtain a
permutation involving (suppose) s lines which yields x to the lowest power that
occurs in the sub-lattice function of order s. When the lattice is complete we may,
in any derived permutation, write o,_,,; for o, and invert the order, and we thus
obtain another permutation belonging to the same sub-lattice function as the former.
For a succession a,|a, p > q in the former becomes by the stated operations
g1 | Om—ps1, Where m—q+1 > m—p+1 in the latter; and if «, is the £ letter
from the left of the former permutation, a,,_ ., is the mn—k™ letter from the left of
the latter. Hence, if the power of « given by the former permutation be

w?l"‘?’%‘*‘u-*‘?",
that given by the latter is

QST TP s

Thus, for every term a? in L, there is a corresponding term ™72,
Hence we may say that I, is centrically symmetrical both as regards the powers of
x and the coefficients.
If e be the lowest power of x in L,, determined as above, the highest power of «
will be mns—e.
Ex. gr.,
' Ly(,8,8) =1,

Ly (oo, 3, 3) = &®+22°+ 20" + 22°+ 2a° + &,
L, = 2 (2 + 2" + 20+ 22" + 22" + & + 2%,
Ly = oM+ 22" + 20" + 20 + 20" + &,
L, = 2%%;
and it will be noted that
in L, «* and «**; in L, «* and «®*7*; in L,, 2* and 2**;
occur in pairs, whilst the theorem is clearly verified in L, and in L,
The result of writing % for & in L, is the acquisition of the factor ™ by L.

Art. 20. Let ¢, and £, be the least and greatest exponents of « that occur in the
expression of L, (o, m, n). Consider again the permutation

&%y, Oy l 0y, O ’ a2l 01y ey Oy l Opy—15 Oy 5
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e, 1s the exponent of « due to the dividing lines when only the first s lines from the
left are retained, the letters to the right of the s*™ line being arranged in alphabetical
order. If u=(m—1)(n—1) we know that e, = f, = fmnu. What is the relation
between ¢, and e,_,? To obtain e,_, we must clearly obliterate the last s lines on the
right and arrange the affected letters in alphabetical order. Since the number of
letters is mn, if for e, we retain s lines which give

€ = Pr+Pat ... +Dy
we must for e,_, reject s lines of power values

MR =Py, MA— Py, ..., M= D,
Hence
Cums = €, —SMNL+€, = e+Emn (u—2s) ;

and from the symmetry of the permutation we find also
Jums = Jotgmn (p—25) ;

s (B‘f p—s = gplfamn (u—2s) (.’L‘es + 27 s}) ;

go that

an interesting result which foreshadows the theorem

L., = ame T,

The circumstance that the lattice function, when the lattice is complete, involves «
to the power $mn (m—1) (n—1), which is the greatest exponent of x that occurs in
the outer function, is consistent with the inner function being simply unity.

Art. 21. T will now investigate an expression for L ( o, m, n).

Suppose that a certain power of x arises therein from the conjunction a,/a,, where
m=v > u, and let the Greek letter succession be

A)o,|a, (B,

where in the space A there is any suitable succession of letters in ascending order (of
subscripts) to v, and in the space B any suitable succession such that the subscripts
are in ascending order from w. '
The least power of @ is obtained when in the space A there is the succession
I PN N 7 SN - SR
This gives the term g+ ¢#=Du=n+1,
The greatest power arises when in the space A is

n, n n n—1_ n—1 n—1_, n—2,
Ol Oy e e Oy 1By Oy g 1o e sy 10y )

and this gives the term a®~ 17+,
VOL. CCXI.—A. ' 0
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98 ‘ MAJOR P. A. MAcMAHON: MEMOIR ON THE

It must be remembered, in assigning these successions to the space A, that only
one dividing line is to be in the whole permutation, and that the latter must possess
the fundamental property which is the attribute of all such.

Writing the above succession

n n 3
Oby Oy e e Oy Oy Oy 1o o s Oy 1 Oy l Oyoe s

n, n n n—1_n~1 n—1, n—1
O Oy e 0y 10 Olyg1eee Oy 10y iau"';

we have to determine all of the successions ranging from

n—1,n-1 n—-1,_ n—1
0Oy g1ee OOy tO @) o Tyl 00 0

that may be placed between «;*a;"...a",_, and the dividing line in order to form an L,
succession involving e, | «,.

Since u, u+1, ..., v 18 a succession of v—u+1 numbers in ascending order we are
clearly concerned with the whole of the partitions at the points of a one-row lattice
of v—u+1 nodes which are such that the part magnitude lies between n—2 and zero.

If g1¢s- .. Jy—us1 be one such partition

S — (n—1) (n) ... (n—{—v—-u—-l).
(1 (®)... (v—u+1)

Denote by L ,, that portion of L, which is associated with the conjunction a,|e,;
then

o+ (- tyu—nt1 (A—1) (n) ... (n4v—u-—1),
(1H@)...(v—ut1) °’

_ vt -nu—n+1 (—1) (0) ... (04 v—u—1)
= S damen A)@) .. v—utl)

Put herein v = u+j, then, for a constant value of 7,

Ll,vu =X

leading to

L, (0, m, n)

©. m.n) = 41 gt = (=1 (41 ( "'1)( )(n+—1)
Ll( , M, )] {007 + +...+ (i )} = (1)(121)(J+i])
_ pn@m—1j) (n—1)(n)...(n4j—1),
(n) 1@ ...G+1)

and, consequently, giving j all values from 1 to m—1,

(am—n) (@—1)a)

(n) (1)(2)
o (nm —2n) ' (n—1) (n) (n+41)
(n) (1)(2)(3)

Li(,mn) =

+...

+x’ﬁ@ . (n—1)(n)... (n4+m—2)
@ W) @



http://rsta.royalsocietypublishing.org/

A A

L

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

JA \

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THEORY OF THE PARTITIONS OF NUMBERS. 99

Art. 22. It is not, I think, immediately obvious that this series can be effectively
summed. That this is, in fact, the case appears when the problem is looked at from
another point of view.

T shall show that

(n4+1)(n42) ... (n4+m) (mn+1),
(1)(2) ... (m) (1)

Ly (0, m,n) =

for suppose that the permutation

n—kn

arog a0 e Ly,

gives rise to the term x*, where (kk,...k,) is a one-row partition of Sk The part to
the left of the dividing line may be as small as e, and the part to the right as small
as &, ; hence 2k has values ranging from 2 to mn—2; the partition (kks...k,) has
parts limited in magnitude to 7 and in number to m ; and if there were no deductions
from the total of partitions the value of L, ( o, m, n) would be

(n4+1) (n42) ... (n4m)
0@ @

but there must be deductions, because every partition of the form 7% must be absent ;
for the corresponding.succession of letters is

n n n .
o ..ol

and a dividing line cannot be placed after this succession because every letter prior
to a;4, has already appeared to the left of «;,/. Of these omitted partitions there is
one, and only one, of each weight, viz. :—

For
7 =0 1, a, of .. 0"
1=1 oo, ey’ Loy,
1=2 ooy, otagtey, L ooy e,
7: = m—1 alna2n X a':fz—lam) (XN alnaﬁln X am”'

Hence we must subtract
(mn4-1)
1 -

L, ( o, M n) = (n+1) <n+2) (n—l—m) _ (mn+1)
» M, (1)) ... (m) a

and

Since L, = 1, we have also

Ly (o, m, n)+L; (o, m,n) = (n+1()1()n(-2|-)2'). : .(.ngx+m) o (1(1;1;),

o2
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The Fundamental Relation.

Art. 23. We must now examine the fundamental relation

(I+1) (142) ... (I4-mn) Ly + (1) 14+1) ... (4+mn—1) L, + ...
oo (1=t 1) (= p42) .. (=t mm) T,
- (1) (2)... (mn) ‘
_LLo+ L+ ..+ 1L,
=@ @... (un)

for brevity, where

GF (I, m,n) =

l, = (I—s+1) (I—s+2) ... ({—s+mn)
po= (1’)2—1) (n——l).

When a partition enumerated by GF (/, m, n) is represented graphically by nodes
in three dimensions, we see that the nodes form a portion of a parallelopiped of
nodes, the sides having /, m, n nodes respectively ; the unoccupied nodes graphicaily
represent another partition of the number lmn—w if the former partition be of the
number w. Hence, if GF (I, m, n) be F (x), we have (writing Co as short for coefficient),

and

Co 2 in F () equal to Co 2~ in F (x) or equal to Co 2 in & F @) From which
it appears that F<olc> = ¢~ F (x), and this property may be directly verified in the

fundamental relation by means of the formulae
(—s) = —a7(s); L <$> = &~ L, ().

From another point of view we may suppose the nodes of the lattice of m rows
and 7 columns to be all occupied by parts, zero being taken as a part, and then if we
diminish each part by [/, we obtain a partition of the negative integer —(Imn—w) into
negative parts 0, —1, —2, ... —; the effect upon the generating function F (x) is

alternatively to substitute —35 for = or to divide it by «”". It will be noted that in this

respect L, ( oo, m, n) possesses the same property as GF (s, m, n).
The numerator function lyLy+4 L+ ... +1,L, has the factor

(41) 1+2) ... l+m+n—1)

which stands as a determined factor of the generating function.
Writing
l, = (14+1) 1+2) ... (+m+n—-1) 1/,
) = (I—s+1) (I—s42) ... (1) (4+m~+n) ((4+m+n+1) ... (I—s4mn);

I/ involving (m—1) (n—1) or p bracket factors.
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THEORY OF THE PARTITIONS OF NUMBERS. ’ 101

I observe at this poinﬁ that the substitution of —{—m—mn for [ converts the factor
(I4+1) (142) ... ((4+m+n—1) into ' '
(_)m+n—xm—<m+n—1)<z+1/2m+1/2fa) (I+1) ((+2) ... (+m+4n—1),
so that it is unchanged except as to sign and a power of @ prés.
Art. 24. Some particular cases of the fundamental 1elat1on are instructive.
Thus
I4+1)...(1+4)+1)...(143) «*
67 (12,2 = (ED (00 (40
= (I+1()1(>I(—*2'>22)(3()I+3) = [LM] ]LM]2 when m = 2.
Observe that
(1) .. (44)+({) ... (143) * = (I41) (14-2) (I4+3) {(I+_4)+(I) x*},
= (+1) ((42)2 (I43) L( =, 2, 2),
showing that L ( o, 2, 2) is a factor of the numerator.

It appears that in general L ( o, m, n) is a factor of the numerator.
Thus .

(14-1) (14-2)2 (143)° (144)2 (14+5) L ( o, 3, 3)
GES 2 = ) ) )
a5 = EDE)E)
b 59 = ey @ a)
_ (1) A4-2)2 (14-3)3 (1+4)* (14-5)
Gre.23) () (2F @F 2 5)
=|LM|,|LM|,|LM|; when m = 8.

and since

Art. 25. T have arrived at the expression for GF (/, 2, n) in the following manner.
We have .
§= n—l
F(,2, (l—s41)...(l—s+2n)
GF(l,2,n) = 0 D) L, (e, 2, n),
and I determine L, ( oo, 2, n) from the Greek letter succession ; for suppose's = 3 and
a succession to be

ap1+lﬂql+1 l ap,+IBq,+1 | ap3+1,8q3-1-1 ] ap4+1'6q‘+1,

where pi, Pa, P, Pis 1> 920 G5 9« may have all integer (including zero) values subJect

to the conditions
Sp =3q =n—4;

= PrrP=itqa; ]01+102+_203 91+ Q2+ Qs
A proper permutation with three dividing lines is thus secured, and we have to
perform the summation

2%3 (71t 20 +2(patqs) +?93+93+12,

which is the expression of L ( w0, 2, n).
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102 » MAJOR P. A. MacMAHON: MEMOIR ON THE
But I have shown in Part I1. of this Memoir that

2x3(P1+71)'1'2(202""]2)""?’3"'93

subject to the stated conditions is GF (n—4, 2, 3).
In general I thus establish that

Li(,2,n) =2*""GF (n—s—1, 2, 5);

so that T am able to write

) s=n—1
_ sorny (U=sF1) o (I=8420) vy o oy,
| GF (1, 2,n) EO X 1)...(20) GF (n—s—1,2,s);
the expression of GI'(/,2,7) is thus made to depend upon the expression of
GF (7, 2,7"), where I/, #' have all values such that

U+n) =n—1.
Now assume
! N = (I/+1){(I/+2)(I’+n/)}2 (I/+n/+1)
that G (1) {(2)...()}2 (o' +1) ’

st e (L=s 1) (I=s2n) (n—s){(n—s+1)...(a—1)}*(n)
GIF(2,m) = 2 =00 1@ 06

or

(1) ... (2n) N ]
(1+1)...(1+n+1)GF(l’2> ) = (I4+n42) ... (14+2n)

. 1)@= (@)
+(l) (I+ +2) (I+2 1) (1) (2)

- n42)... n—g) g (0=2) (1—1)(n)
+(—=1) () (+n+2)... (I+2n—2) ) (2] @)
+...

+(l—n+2) ... ([) x>~

It is easy to show that (I4+2), (I43),... (I4+n) are each of them factors of the
right-hand side ; the remaining factor is free from /, and is, in fact, the lattice function
L( o, 2, n)

Giving [ to the special value zero, we readily find

?

and thence :
(D) ((142) o () (it 1)
GF (. 2.m) DHOBRC)E S U

as was to be shown.
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THEORY OF THE PARTITIONS OF NUMBERS. 103

This proof rests upon the assumption that the law can be shown to hold for
GF (n—s—1, 2, s) for all values of s from 0 to n—1, and for all values of n. Now
suppose the law to hold for GF (I, 2, v) for all values of » inferior to n; then it
obviously holds for GF (n—s—1, 2, s) for all values of s inferior to =, and thence, as
has just been proved, it holds for GF (7, 2, n) ; but the law does hold when » = 0 or 1,
and thence by induction the law holds in general. This method of proof seems to be
of application only when m = 2, for then only can the function L, (o, 2, n) be
identified with a form GF (U, 2, n') where the sum of I+#’ is less than n.

Art. 26. I turn again to the relation
LLo+ L0+ ... +0,L,

(1) (?) ... (mn)
in order to establish relations between the functions GF (I, m, n) and the sub-lattice
functions L, ( o, m, n). The relation, as 1t stands, exhibits GF (/, m, n) as a linear
function of the sub-lattice functions, but giving / the special values 0,1,2,... in
succession, we obtain

GF (I, m, n) =

GEF (0, m,n) = Ly (oo, m,n) =1,
GF (1, m, n) = L“EZT‘F)J_) T (o0, m, ),

GF (2, m, n) = (mnﬂ; ((g‘)“”) T (m‘g; D+,

mn+1) ... (mn-+u) N (mn+1) ... (mn+u—1)
(1) ... (@) (1) ... (n—1)

GF (p, m, n) = (
and thence
Lo = 1,

L, = GF (1, m, n)—(mx(ll-})-l) ,

L, = GF (2, m, n)— (ml(lj)_l) GF (1’ m, n)+x(ﬁr%l<)gl(%)j_—1) ’

L, = GF (u, m,n)— (in—%i-")_—l)GF (p—1,m,n) +w£nﬂl%l()n?21)+—1—) GF (p—2, m, n),

_ IRV (mn—k+42) ... (mn4-1) o

ver e+ (=) ) ... (8 GF
(mn—p4-2) ... (mn--1)
(D) () .

(p—k, m, n)

+ ..

+ (=)D
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Since I, = 0, when s > pu, the series may be continued,

0=GF (u+1,m,n)— (mn+1)GF(,u, my )+ oo+ (=) 1/2n<u+1>(mn —p+1).. (mn+1)
2 (1) (1)

and for values of [ ranging from p+1 to mn,

0 = GF (I, m, n)— (m 1(114)'1) GF (I-1, m, n)+ ... +<__)zml/2(z—1>z(mn"a‘)l‘}.)(-l-—-{_(lln)n‘{“l) ,

the series having {+1 terms; but, when I > mn,

0 = GF (I, m, n)— (mlz—f)-l) GF (I-1,m,n)+ ... + (=)Wt D G (I—mn—1, m, n),
the series having mn+2 terms.

Art. 27. We have thus a number of difference equations satisfied by the functions
GF (I, m, n), and we can now show that if

GF (I, m, n) = |LM|,|LM|,...]LM|, = J (1, m, n)

for all values of / not exceeding mn, the law is true universally.
For J (I, m, n) is of the form

PO"" lel + P2x2l__ . ( _ )mannwlmn’

where the coefficients P are functions of independent of /.
Then
P 0o _ Pl P2 — (_ )-mn P mn o
1—0 1—0x 1—0x* 7 1—0xm™’

§J (l', m, n) ' =
0

from which it appears that
(1—0) (1—0z) ... (1—02) £ (I, m, ) &
0

is of degree mn in @, at most, and hence, when ! > mn, since

. iy _ mn+1) |, (mn)(mn41
(1=6) (1=62)... (160 )=1-6¢ L ( ()1()(2) )

we have

J (I, m, n)— (mn+1)J(l—1, m, n)+ ... + (=)l (l—mn—1, m, n) = 0

(1)

but 1t has been shown that I > mn

GF (1, m, n)— (m?l’;'l)GF(l—] My 0) s v, (= YIS (I — 1, m, m) = 0,
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Assume that GF (I, m,n) = J (I, m, n) when I does not exceed mn ; then putting
! = mn+1 in our equations, we find that

GF (mn+1, m, n) = J (mn+1, m, n);
and thence by induction |
GF(,m,n)=J(, mna) when [>mn.
Art. 28. I now write the fundamental relation
Lo+l Li+...+1L,
(1)(2) ... (mn)

GF (I, m,n) = 1%,

0

GF (I, m, n) =

in the form

where
El - l0L0+l1L1+-.-+l L

(Man™

‘and assume that GF ([, m,n) is a product of powers of factors of the two types
1—a'*, 1—a*, or (I+s), (s), where the powers may be positive or negative integers.
I thus write

% = I, (I45) . T (s),
leading to
B, — II, ([+5+1) .
K I, (I+s)
Now .
E, _ (mn41) S (n4+1) (n+2)... (n+4m) ’
B 1) @) ... ()
therefore
I (s+1) _ (n+1)(n+42) ... (n4m)
11, (s) (1)(2) ... (m)
and
By _ (I4n41) (40+4-2) ... (I4+n4-m) = NM |
E — (+1)(1+2)...(I+m) e
therefore
Bits | NM [ 10s | NM o,
i
and
BT | NM s | NM 143 [ NM

Putting herein I = 0, I = [, _
T | NM, | NM], ... |[NM],.
0
Hence
GF ([, m,n) =|NM|,|NM|,...|NM]|,,

and on the assumption as to form the main theorem is established.
VOL., CCXI.—A. P
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Art. 29. We may now obtain properties of the sub-lattice functions—
For, in the relation
E .
El)= INM|,|NM|,...|NM]|,,
put I = —l—m—n and observe that (—s) = —a7*(s).
We find

mn

By, = 5‘_(‘/)‘<—> (1) ... (4-m) T, +2 (1) ... (4mn—1) L, _,
+ootat™ (I— pu+1) .. (I4+m+n—1) L};

_\mn

and |[NM|,|NM| . |INM]|, is unaltered to a factor -ggﬁnn—ng—m—) pres.
Hence the identity
((4+1)...((4mn) L, +a"(1)...04+mn—1) L+ ..+ (l—p+1)...(l—u+mn) L,

= gl (41, (4mn) Ly +(1)...(Hmn—1) L+ ...+ (I—p+1)...((—p+mn) L, }.

Herein putting
' I=0 wefind L, =z,

l=1 7 Lﬂ-‘l = gl mn Ll;

=2 5y L g = Q’JI"""'(M_mm" LQ,

"

l =t 33 L,U-—t = '/’CI/Z(M_%)mn Lt:

exhibiting an elegant property of the functions,
From the relation

Dt |NM [y NM, .. |NM],
0

we find, giving [ the values 0, 1, 2, ... in succession,

=1,
mn-41)

L, = | NM|[,—{ <1>“)’

L2=1NM|IINM]2—@—’Z{;J—)';NM;,+QG(‘“‘W_~_“M,

(1) (@)

I, = [NM[,[NM[,...|NM|,— @20 ), | NM ... [NM] o

1)
+. +(——)"ac‘/:«(“"1)u (mn—/lf+2) (‘mn..'_ 1)
» 0 (@)
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THEORY OF THE PARTITIONS OF NUMBERS. 107

The relations between the functions L, and L, yield remarkable algebraical
identities.

So far I have established a new method for the discussion of these questions of the
arrangements of numbers, and have made some progress with the simplification of the
fundamental expression arrived at for the generating function. I have further shown
the great probability of the outer lattice function being the whole lattice function
whenever the lattice is complete. Before this can be rigidly established, I believe
that a further study of the theory of the incomplete lattice will be necessary. TFrom
many particular incomplete lattices that have already been worked out this
investigation promises well, and I hope in due course to lay the results before the
Society.

PostscrrIpr.

There is an analogous theory which is concerned with the totality of the permuta-
tions of aa ... a,”. We thus obtain permutation functions which possess elegant
properties. The functions also arise from the theory of partitions.

Suppose that we desire the number of two-dimensional partitions of a number such
that the nodes of the lattice descending order of part magnitude is in evidence in
each row but not necessarily in each column. It is immediately evident that the
generating function of such at the nodes of a lattice which contains p,, p,, ..., p, nodes
in the successive rows is

1
1) - (@) (1) - (@) o (1) oo (B)
whether the numbers p,, p,, ..., p, be in descending order of magnitude or not. This

fact enables us to determine the lattice function and the sub-lattice functions
derivable from the whole of the permutations of the letters a/a? ...« when we
may suppose the exponents py, ps, ..., P, to be in descending order of magnitude and
establishes also that these functions are invariant for any permutation of pi, ps, ..., Pa
tn the product aPo? ... o,

We may proceed in exactly the same manner as when the restricted permutations
were under view. Taking the lattice corresponding to «,’a a; and arranging 6
different numbers in any way so that descending order is in evidence in the rows

321
6 5 otg0tg0t | oty 0ty

4

we have the arrangement figured and the corresponding Greek-letter succession,
yielding a portion

w3

@M. (6

P2

of the generating function.
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For the whole of the permutations derived as above from the lattice which are, in
fact, the whole of the permutations of a,*a,’a; we derive a permutation function

PF (; 321),
such that the generating function sought is
PT (; 321) ,
(1)...(6)
and this we know otherwise to have the value
1

(1)(2)(3). (1)

(2
PF ( co; 821) = (Sg?(

). (1)
(3) (4) (5) (6)
3).(1)(2). (1)
(1) ... (3p)
PE (oo 9195 ... 0,) = )
(o5 2 o) = o T o () e (T oo ()
an expression which is to be compared with the number which enumerates the

permutations of the letters in a”a,” ... a,”. The former becomes equal to the latter
when = = 1.

Hence

and, in general,

When the part magnitude is limited by the number [, the enumerating generating
function of the partition is

(1) o (1p) . (1) o () o (1) o (L),
(1) oo (p) - (1) o (Pa) oo (1) ... (pw)
but, from previous work, if PF,(o; pp;...p,) 1s the sub-permutation function
derived from the permutations possessing s dividing lines, this generating function

1s also
(141) ... (I4+3p) PE,+ (1) ... 14+ 3p—1) PF,+...... +(l—v+1) ... —v+3p) PF
(1) ... (Zp) |
where v = Sp—p, (see ‘ Phil. Trans. Roy. Soc.,” A, vol. 207, p. 119).

Equating the two expressions for the generating function, and giving ! the values
0, 1, 2, ... in succession, we find the relations

1 =PF,,
(P+1) (1) .. (py 1) _ (BPHD)
(ar BERCU
@rFU@r+%Km+4Xm+%)~@f+UOw+%_(2b+1X2b+®+}2b+1hnﬂ+PFg
(1) ()" G (1) ’
&e. = &ec.,

from which the general expression for PF, is readily obtainable.
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Putting p, = p, = ... = p, = p for a complete lattice, we find
PFO = 1’

+1 np+41
PF, = {(P(l) )} ( 121) )

PF, = {(P+1)(P+2)}n_(np+l){(P-}-l)} + o (39) (mp+1)

(1)(2) (1) (1) (1)(2)

_ J+1) ... (p45)1* _ (op+1) [(p+1)... (p+s—1)|"

PF’—{ (1)...(s) } (1) { (1) ... (s—1) }
vt (= Y00 (np—s+2) ... (np+1)

M.~ 6

A simplification, when n = 2, is interesting ; for then

PF, (o; pp). = «* {(p) (1)(1’—(:)-!-1)}2

In fact, more generally it will be found that

PF, (=; pq) = «~ (p)... (p"—?{'('}i:)l) (&))} (q—-s+1)

An interesting verification is supplied by a result in a previous paper.* It was
therein shown that the number of permutations of the letters composing the product

aﬂﬁq’
‘which have s dividing lines, is the coefficient of Ma?? in the expansion of the product
(2 +MB) (2+B)"

From this expression I derive a function of x, viz.,

(2 +MBx) (2 +ABx?) ... (a+ABx?) . (B+a) (B+ax) ... (B+oat™),
and therein the coefficient of Ma?B? is readily shown to be

g (B) oo (p—s+1).(q) ... (q—s+1)

{(1) .. (s)5
as already obtained.
When the lattice is complete the functions PF, possess elegant properties, just as
when the permutations are restricted.

* «Memoir on the Theory of the Compositions of Numbers,” ¢ Phil. Trans.,” A, 1893, Art, 24,
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For, in the identity

{(I+1) (I+2)---(I+p)}“
(1) (2)...(p)
_ (4+1)...(14np) PF,+(1)...(14+np—1) PF, + ... + ((—np4p+1)...(14-p) PF,_,, ,
~ (1)(2)---(np)

substitute —/—p—1 for / and we find that the left-hand side is merely multiplied
by a7~ @+ whilst on the right hand the coefficient of PF, is multiplied by
g~ hrper=2=2=1) - An identity thence arises, and putting therein 7, = 0,1,2, ... in
succession, we find the relations o ‘

Panﬂ'v = gk PR 05

PF,,_, = a'»6=0w=m PR,

‘ N 1 -—1 y 1.
Pan—p—s = =) pi-snp PF“

giving very noteworthy algebraical identities.
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